Asymptotics for the size of the largest component scaled to ” log n ” in inhomogeneous random graphs .
نویسنده
چکیده
We study the inhomogeneous random graphs in the subcritical case. We derive an exact formula for the size of the largest connected component scaled to log n where n is the size of the graph. This generalizes the recent result for the ”rank 1 case”. Here we discover that the same well-known equation for the survival probability, whose positive solution determines the asymptotics of the size of the largest component in the supercritical case, plays the crucial role in the subcritical case as well. But now these are the negative solutions which come into play.
منابع مشابه
The size of the largest component below phase transition in inhomogeneous random graphs .
We study the ”rank 1 case” of the inhomogeneous random graph model. In the subcritical case we derive an exact formula for the asymptotic size of the largest connected component scaled to log n. This result is new, it completes the corresponding known result in the supercritical case. We provide some examples of application of a new formula. 2000 Mathematics Subject Classification: 60C05; 05C80.
متن کاملMerging percolation and classical random graphs : Phase transition in dimension 1
We study a random graph model which combines properties of the edge percolation model on Z d and a classical random graph G(n, c/n). We show that this model, being a homogeneous random graph, has a natural relation to the so-called " rank 1 case " of inhomogeneous random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describe completely the phase diag...
متن کاملMerging percolation on Zd and classical random graphs: Phase transition
We study a random graph model which is a superposition of bond percolation on Zd with parameter p, and a classical random graph G(n, c/n). We show that this model, being a homogeneous random graph, has a natural relation to the so-called “rank 1 case” of inhomogeneous random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describe the phase diagram on ...
متن کاملMerging percolation on Z and classical random graphs: Phase transition
We study a random graph model which is a superposition of the bond percolation model on Zd with probability p of an edge, and a classical random graph G(n, c/n). We show that this model, being a homogeneous random graph, has a natural relation to the so-called ”rank 1 case” of inhomogeneous random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describ...
متن کاملThe phase transition in inhomogeneous random intersection graphs
We analyze the component evolution in inhomogeneous random intersection graphs when the average degree is close to 1. As the average degree increases, the size of the largest component in the random intersection graph goes through a phase transition. We give bounds on the size of the largest components before and after this transition. We also prove that the largest component after the transiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008